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Abstract: A cyclic hydrazide containing an allylsilane functionality obtainable by an aza-ene reaction
provides ready access to a bicyclic 1, 2- dinitrogen compound related to naturally occurring
pyrrolizidines. © 1998 Published by Elsevier Science Ltd. All rights reserved.
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In a series of papers, we have recently described the utility of cyclopentanoid allylsilanes 1 as versatile
building blocks for the synthesis of a diverse group of cyclopentane containing natural products (Scheme 1)."? These
intermediates are available in near quantitative yields by 5-(3,4) ene cyclization of activated 1,6-dienes 2 containing a
homoallylsilane unit as ene donor. This work prompted us to examine a related aza-ene reaction’ of 3 featuring a
reactive azodicarbonyl moiety as enophile to the cyclic hydrazide 4. The resulting species can then be elaborated via
reductive cleavage of the N-N bond™* and exploitation of the allylsilane side-chain to azabicyclo[3.3.0]octane, the
nucleus of a group of pyrrolizidine alkaloids which continues to receive intense attention by synthetic chemists.” In this
letter, we report on the feasibility of the aza-ene route to 4 and allylsilane induced stereoselective cyclization of the
corresponding methoxymethyl derivative 9 to a fused tetrahydropyrazole 10 which may be looked upon as a mono-
nitrogen analogue of biologically significant pyrrolizidines.
Scheme 1
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The ene educt 7 (mp. 76° C), a crystalline acylhydrazocarboxylate, was made from 3-(trimethylsilyl)propanal
(5)° in an overall yield of 51% as described in Scheme 2.
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a) CH,=CHMgBr, THF, 80%. b) CH;C(OEt)s, H', tol, 82%. ¢) KOH, MeOH, 94%. d) (i) NaH, be, then (COCl);;
(ii) NNHCO;Me, Et;N, CH.Cl,, 84 %.

It was envisaged that oxidants’ capable of converting hydrazides into azo compounds would convert 7 into 8
{Scheme 3) via ene reaction of the in situ generated azodicarbonyl intermediate (c/. 3). It was also deemed necessary to
make use of neutral or slightly basic oxidants to ensure survival of the acid labile allylsilane 8. Two different oxidants
e.g., Ag,COs~impregnated celite® and activated MnQ,’ were initially selected for optimum results. Sonicating 7 with
25-30 eq of activated Mn0O,* in 1,2-dichloroethane at 15°C for 3h gave a white crystalline solid which upon
recrystallization from ether-petroleum ether (40-60° C) gave E-8 (m.p. 89° C) containing traces (ca.5%) of the Z-isomer
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in an yield of 49%. The structural and stereochemical confirmation of 8" followed from analysis of its 'H-and “C-
NMR spectra. Sonicating 7 with 10 eq of Ag,COu/celite® reagent in hot benzene for 7h followed by preparative layer
chromatography of the crude product also gave a semisolid material (38%) as a mixture (the isomers do not resolve on
TLC) of E-8 and Z-8 in a ratio of 4.5:1, respectively. It is our experience that MnO, oxidations generally give a purer
ene product 8 in consistently good yields.
Scheme 3
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2)MnO,,CICH,CH,CL.15°C 49%. b)Ag.COs-Celite,bz.38%. c)NaHMOMCL THF,90%. d)BF;. OEtx(2.5eq),CH,C1,.0°C,51%.
€)KOBu' Mel. THF.0°C.90%. f)Li/NH;,70%.

In order to demonstrate the utility of the allylsilane side-chain, 8 was next converted to the methoxymethyl
derivative 9 and exposure of the latter to BF; Et,0'"'" (2.5 eq) in dichloromethane gave the fused tetrahydropyrazole 10
in 51% vield. The structure and relative stereochemistry of 10" rest on high-field 'H- & “C-NMR as well as nQOe
studies. The high stereoselectivity in the reaction 9—10 is readily explicable in terms of the synclinal'’ transition
structure 13 of the N-acylhydrazonium intermediate which for steric reasons is largely favoured over 14. Finally, 8 was
converted to 11 and reductive cleavage of the latter with Li/NH; yielded 12, the building block for pyrrolizidine
alkaloids.

In conclusion, a route to S-membered heterocycles 8 and 12, each with a built-in allylsilane terminator has been
developed and the use of the former in the synthesis of a fused tetrahydropyrazole demonstrated. Further work to utilize
12 for the synthesis of azabicyclo[3.3.0]Joctane skeleta related to pyrrolizidines is under active investigation in this
laboratory.
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